Category Archive Blog

Avatar ByKersten Marx

MinSiDeg

Minimise sinter degradation between sinter plant and blast furnace exploiting embedded real-time analytics (MinSiDeg) project abstract

Sinter with high and consistent quality, produced with low costs and emissions is very important for iron production. Transport and storage degrade sinter quality, generating fines and segregation effects.

Conventional sinter quality monitoring is insufficient: Slow and expensive. Consequently, the impact of sinter quality on daily BF operation is extremely intransparent.

In MinSiDeg, new transfer systems and procedures will minimise degradation during transfer to save return fines and stabilise particle size distribution.

New on-line measurements will be established, combined and exploited with Big Data technologies. This break-through in continuous quality monitoring will enable combined optimisation of sinter plant and blast furnace.

Kick-off-Meeting for „Minimise sinter degradation between sinter plant and blast furnace exploiting embedded real-time analytics“ (MinSiDeg) in Linz

MinSiDeg objectives

Major objective of the project MinSiDeg is to clearly decrease costs and environmental impact of sinter plants and blast furnaces. To achieve this, the sinter quality will be optimised along the production chain improving both, sinter plant and blast furnace working.

The following general technical objectives are defined:

  • quantify sinter quality fluctuations (minutes to several hours)
  • intensify the exploitation of data by Big Data methods
  • minimise sinter degradation by material handling
  • make (physical) sinter quality transparent and more stable
  • improve BF shaft permeability

MinSiDeg will realise the objectives by 3 main approaches (cf. Figure 1):

  1. Online monitoring of physical sinter quality by new measurements
  2. New equipment and material handling procedures along the transfer to the blast furnace
  3. Real-time analytics of existing and new data streams for machine supported decisions

                                                                               Figure 1: Main approaches within the MinSiDeg concept.

MinSiDeg research approach

The project work will be organised within 5 technical work packages:

  1. Improve sinter stability
  2. Minimise sinter degradation along transport and storage
  3. New online methods for sinter quality determination
  4. Improve value of sinter for the blast furnace
  5. Real-time machine supported decisions on sinter quality

The involved partners in this research project are

VDEh-Betriebsforschungsinstitut GmbH
thyssenkrupp Steel Europe AG
voestalpine Stahl GmbH
DK Recycling und Roheisen GmbH
K1-MET GmbH
Montanuniversität Leoben
The project leading to this application has received funding from the Research Fund for Coal and Steel under grant agreement No. 847334.

Project duration: 1 July 2019 – 31 December 2022 (42 months)

 

Avatar ByKersten Marx

RealTimeCastSupport

RealTimeCastSupport project abstract

Thermal and fluid-mechanical conditions in continuous casting moulds are only roughly known although highly relevant for the product quality. Manual process control is difficult due to the great number of influencing factors. Therefore, the aim of the research is the digitalisation and optimised control of continuous casting machines. Large data streams will considered online and assist the caster operators with a real-time support system. This system will provide suggestions for an optimised process control in real-time. It will be developed with application of new measuring techniques and representation of the casting machine by a digital twin.

The kick-off-meeting for the RFCS project “Embedded real-time analysis of continuous casting for machine-supported quality optimisation” (RealTimeCastSupport) took place on 1st and 2nd of October 2019 at premises of the coordinator BFI.

VDEh-Betriebsforschungsinstitut GmbH
AG der Dillinger Hüttenwerke
voestalpine Stahl GmbH
Materials Processing Institute (MPI)
Minkon SP ZOO

RealTimeCastSupport objectives

The main objective of the proposed research project is:

  • Improved product quality in terms of reduction of hard spots on heavy plates and slivers on cold-rolled strips.

The main objective is accompanied by several sub-objectives which can be assigned to the already mentioned main components of the research project:

Online monitoring of tundish and mould with implementation of new measuring techniques

  • Simultaneous temperature measurements at different positions in the tundish as well as in the mould and monitoring of the casting powder coverage.
  • Online application of new measurement technologies FOTS and DynTemp® for temporally high resolving temperature.
  • Implementation of IR-based 2D casting powder monitoring.

Exploitation of various CC data and surface inspection to predict reliability of steel production

  • Offline material tracking, synchronisation of data streams and statistical analysis by application of big data technologies.
  • Identification of defect promoting scenarios by correlation of casting powder monitoring, statistical results and hard spot as well as sliver detection.
  • Realisation of an offline 3D digital twin of the CC tundish and mould considering transient steel melt flow including turbulence, filling level changes, heat transfer, inert gas feeding and solidification.
  • Offline reproduction of the identified defect promoting scenarios with the 3D digital twin in order to find thermal and fluid mechanical reasons for the detected behaviour.

Advanced CC process control in real-time offering machine supported decisions

  • Development of countermeasures against the defect promoting scenarios aiming at the adjustment of the thermal and fluid-mechanical caster status in order to strengthen the options for real-time process control. Assessment of their potential with the digital twin.
  • Adjustment of operational windows for continuous caster operation aiming at an advanced process control.
  • Development and testing of new mould powders and intumescent coatings aiming at modification and improved control of heat transfer in the mould.
  • Modification of electromagnetic actuator’s operation mode.
  • Offline identification of rules for the operation of the casting machine based on conclusions from measurements, statistical analysis and application of the 3D digital twin.
  • Online application of a real-time support system with implementation of the defined rules.
  • Online implementation of advanced real-time CC process considering large data streams.
  • Verification of the effectivity of real-time support system during operational application.

RealTimeCastSupport research approach

Online monitoring of tundish and mould with implementation of new measuring techniques

Available measurement techniques

An important research approach of this project is the simultaneous temperature measurements at different positions in tundish as well as in the mould and the monitoring of the casting powder coverage. This will provide a deeper insight of the conditions in the casting machine depending on time, i.e. transient conditions like ladle or tundish changes can be analysed in detail. The results can then be connected to quality information, i.e. hard spots appearance on heavy plates as well as sliver appearance on cold-rolled strips. The online application of the new measurement technologies FOTS and DynTemp® for temporally high resolving temperature is scheduled as well as the implementation of IR-based 2D casting powder monitoring system. The figure below illustrates the availability and position of the utilised measuring techniques.

Additionally, already available measurements, analysis and online modelling results systems will be utilised for the real-time machine support system:

  • Melt temperature in the ladle.
  • Temperature in the copper mould plates measured with thermocouples.
  • Sliver detection on the cold-rolled strips.

Exploitation of various CC data and surface inspection to predict reliability of steel production

A self-evident element of this project component is the material tracking and the synchronisation of the available data streams. It has to be ensured that the quality information, i.e. hard spots and sliver occurrence, can be assigned to the corresponding casting conditions. But the casting conditions are not only valid for a certain time. They were taken at different positions, i.e. measurements with regard to the determined product quality have to be taken at different times, e.g. melt temperature in the tundish and in the mould, casting powder cover and copper plate temperatures. They have to be synchronised knowing well that different techniques show different idleness, e.g. temperature measurements in the copper plates react slower on melt temperature changes than the DynTemp® measurements. Material tracking algorithms are already available at the steel plants of the industrial partners. They will be used in the frame of the research project. Synchronisation of the measured data will be worked out in the frame of the comprehensive statistical analysis.

For the analysis and assessment of the mentioned data different methods from Data Mining and Big Data analytics will be used. For the computations with the 3D digital twin the analysis of influencing factors of casting is necessary in order to find the target parameter, e.g. the occurrence of hard spots. Therefore, a common analysis of the casting parameters, i.e. the various temperature measurements in tundish and mould and the results of image processing, will be executed by means of Data Mining methods in a first step. Several methods like Decision Tree analysis, artificial neural networks, e.g. Self Organising Map or Deep Learning methods, and others will be applied to detect relationships between the input parameters and the target one. The aim is to identify those inputs – or derived features- which are influencing mainly the target parameter. By the derived subset of input values a digital twin of the casting machine, i.e. a transient CFD model of the considered casting machine, will be developed in order to estimate the impact of altered parameters on product quality features. The findings will be integrated in the real-time support system by the definition of a set of rules describing possible countermeasures. The real-time support system will provide information about possible critical process conditions causing defects and will support operators to find appropriate countermeasures, i.e. it supports the decision making.

Based on these findings measures for an improved thermal and fluid-mechanical process control will be worked out and their potential for thermal and fluid-mechanical process control will be checked with the digital twin. These developed countermeasures will be tools which strengthen the options for real-time process control in the machine support system.

Advanced CC process control in real-time offering machine supported decisions

The chart below shows the organisation of the scheduled real-time support system with the different modules contributing to this system. Comprehensive temperature measurements in tundish and mould as well as the monitoring of the casting powder cover provide the basis for this approach. On the one hand, these data will be utilised for the offline statistical data analysis aiming at an assessment of the casting process and correlations with the corresponding product quality. On the other hand, measurements and monitoring will provide an online basis for the real-time support system. Here the defined rules for an advanced process control will be evaluated in real-time and the status of the casting machine will be judged, e.g. realised as a traffic light.

                                                    Organisation of the real-time support system

The project leading to this application has received funding from the Research Fund for Coal and Steel under grant agreement No. 847334. On 1./2. October 2019 was the kick-off meeting in the BFI. http://www.bfi.de/en/2019/10/16/kick-off-meeting-realtimecastsupport-october-1st-2nd-in-dusseldorf/

 

Avatar ByGerald Stubbe

LowCarbonFuture

LowCarbonFuture

Exploitation of Projects for Low-Carbon Future Steel Industry

LowCarbonFuture project abstract

The project “LowCarbonFuture” has the objective to collect, summarize and evaluate research projects and knowledge dealing with CO2-mitigation in iron and steelmaking.

As final result, LowCarbonFuture will generate a roadmap stating research needs, requirements and boundary conditions for breakthrough technologies and a new CO2 lean steel production to guide the EU steel industry towards the world’s climate contract and the EU climate goals, e.g. by implementing the key findings in the strategic research agenda of the European Steel Technology Platform (ESTEP). Furthermore, “LowCarbonFuture” will contribute to an update of the steel roadmap for a low carbon Europe 2050 and the current BIG-Scale initiative of EUROFER.

LowCarbonFuture initial situation

According to the steel roadmap edited by the European Steel Association (EUROFER), CO2 emission must be decreased by at least 80 % until 2050 (based on 1990’s level).

Only by means of incremental improvement of ironmaking and steelmaking processes the reduction target cannot be reached, since European production routes already perform at their physical thermodynamic limits (black and blue curves in Figure). A complex mix of actions are necessary (curves orange, red and brown in Figure) to reach the ambitious reduction target.

LowCarbonFuture technological pathways

Current pan-European research is focused on the two main pathways Carbon Direct Avoidance (CDA), and Smart Carbon Usage (SCU). SCU is further divided into the pathways Process Integration (PI) and Carbon Capture, Storage and Usage (CCU).

CDA means the production of steel without direct release of carbon emissions based on hydrogen and electricity. Regarding the energy supply, steel production is shifted from carbonaceous sources to hydrogen based sources with electricity from renewable energies. The pathway PI covers the existing steelmaking routes (BF / BOF and DRI / EAF) using fossil fuels (coal, natural gas, etc.) and how these processes must be adopted to release less CO2. Carbon Capture and Usage (CCU) covers the usage of CO2 i.e. all the options for utilizing the CO and CO2 in steel plant gases or fumes as raw material for production of/integration into valuable products.

The involved Partners in the research project are:

VDEH-Betriebsforschungsinsitut GmbH  
Centre de Recherches Metallurgiques (CRM)  
Rina Consulting Centro Sviluppo Materiali S.P.A. (CSM)  
K1-MET GmbH (K1-MET)  
Swerim AB (SWERIM)  

This project receives funding from the Research Fund for Coal and Steel under grant agreement No. 800643.

LowCarbonFuture objectives

The main objectives of this project are:

  • Collection of knowledge dealing with CO2-mitigation within the steel industry
  • Dissemination of the gained knowledge from current research activities (workshops, seminars, webinars, participation in conferences, scientific journal articles)
  • Definition of building blocks for a successful technology implementation
  • Generation of a roadmap stating research needs, requirements and boundary conditions for breakthrough technologies and a new CO2lean steel production
  • Strategies for technology transfer between the steel companies and stakeholders from other industrial sectors

Further information and news of the LowCarbonFuture project can be found on www.lowcarbonfuture.eu/

Avatar ByDr. Martin Schlautmann

Morse

Morse

Model-based optimisation for efficient use of resources and energy.

Initial situation

  • Process industry is continuously looking for new ways to improve resource efficiency
  • Model based control systems are established for the single process units
  • Integration of unit control systems into plant wide coordinated optimisation applications taking into account also overlying logistic constraints, optimisation criteria and production targets can increase savings in   energy and raw material consumptions

Working points in the project

  • Plant-wide analysis of all material and energy flows in order to identify the bottlenecks and main potentials for savings in energy and resource consumptions
  • Adaption and enhancement of single unit components for real-time monitoring and control along the production route, especially regarding a coordinated optimisation of the phases with high potentials for energy and resource savings (like electrical heating, oxygen refining, chromium oxide reduction)
  • Integration of components into a comprehensive, through-process control system with the help of a suitable framework with common interfaces and communication structures
  • Validation of integrated approach for optimisation of resource efficiency within three use cases for carbon steel, stainless steel and cast steel

The project started at October 1st 2017 and ends at September 30st 2021. Involved partners in the research are:

VDEH-Betriebsforschungsinsitut GmbH
Cybernetica AS
GRIPS Industrial IT Solutions GmbH
OPTIMIZACION ORIENTADA A LA SOSTENIBILIDAD SL
Maschinenfabrik Liezen und Gießerei GmbH
OUTOKUMPU STAINLESS OY
SSAB EUROPE OY
SW-Development OY
Teknologian tutkimuskeskus VTT OY
Horizon 2020

Expected results

Model-based offline and real-time optimisation tools for the whole process route to increase overall energy and resource efficiency as well as product quality in production of high-strength carbon steels, stainless steels and cast steels.

The research has received funding from the European Commission, funding reference Horizon 2020 (H2020) / SPIRE-07-2017 / 768652.

Avatar ByDr. Jan Polzer

Cyber-POS

Cyber-POS

Cyber-Physical Production Optimization Systems for Long Production Factories

Cyber-POS project abstract and objectives

Production technology in steel industry has reached a level that significant improvements can only be reached by through process optimization strategies instead of improving each process step separately. Therefore the connection of suitable technological models to describe process and product behavior, methods to find solutions for typical multi-criterial decisions and a strong communication between involved plants becomes mandatory. Cyber-POS will develop a virtual simulation platform for the design of cyber-physical production optimization systems (CPPS) for long production facilities with special emphasis to thermal evolution and related material quality, leading to reduced energy consumption, shortened production time and improved product quality.

The main objectives within this project are:

  • Optimization of throughput and reduction of energy consumption for the production of complex profiles in Mannstaedt’s hot processing line and
  • Optimization of material quality and properties for rail mills at ArcelorMittal España.

This is achieved by applying the developed software and methods for the specific use cases. This implies the following sub-objectives:

  • Virtual simulation platform for the design of cyber-physical production optimization systems (CPPS) for long production facilities; with special emphasis to thermal the evolution and related material quality, leading to reduced energy consumption, shortened production time and improved product quality;
  • Merging of process models (thermal, rolling, transport), material-quality models, logistics/scheduling models and communication models (computers, software, networks);
  • Strategies and methods for cooperative production optimization, enabling fast dynamic and flexible reaction on quality variations, critical states, measurement errors, and changes in set-points, production routes, process disturbances or interruptions;
  • New and comprehensive, model-based (simulation) software for design of CPPS for long product factories, with a cyber-physical library for “drag-and-drop” implementation.

The project started at July 1st 2016 and ends at December 31th 2019. Involved partners in the research are:

VDEH-Betriebsforschungsinsitut GmbH  
Arcelor Mittal España  
ASINCO GmbH  
Fundación ITMA  
Mannstaedt GmbH
Scuola Superiore Sant’Anna di Studi Universitari e di Perfezionamento  

Cyber-POS project expected industrial impacts

The research has received funding from the European Union’s Research fund for Coal and Steel (RFCS) under grant agreement No. 709669.

The main motivation for introducing the methods of cyber-physical production optimization is essentially to preserve the economic performance and safety level in spite of faults and process changes that may occur over time. The CPS platform to be developed can be regarded as an assistance system that will support plant personnel/operator decisions, and thus can contribute to the improvement of working conditions. All involved processes can actively communicate with each other, know their field of activity and production conditions. The optimizations made are also more tailored to the human workforce.

Higher maintainability, reliability and efficiency of long production factories through cyber-physical production optimization will lead to improved product quality, reduced maintenance costs and decreased material and energy consumption. This will have a positive impact on preservation of natural resources, energy and environment. Needless to say, reducing energy consumption leads to reduced CO2 emissions.

At the two involved plants of ArcelorMittal España and Mannstaedt, the developed concept will be installed as assistance system and tested in the process route reheating, hot rolling and cooling. This leads to increased flexibility of process chain, higher productivity, better disturbance management and energy savings.

Avatar ByRoland Pietruck

RemoCoal

Real Time Monitoring of coal composition in closed systems for fast process control

RemoCoal project abstract

Nowadays for competitive hot metal production at a Blast furnace it is necessary to realize a high pulverised coal (PC) injection rate at a minimised coke rate. But actually there is a lack of real time analytical technologies to obtain reliable short time information of the actual composition of pulverized coal blend which is injected into the blast furnace (BF). A real time analysis of the pulverised coal blend opens up the opportunity to detect unexpected or prompt deviation in coal blend composition. It enables to run an optimized total BF fuel rate, a reduction of fuel cost for hot metal production and subsequently decreasing CO2 emissions.

Within the project the Pulsed Fast and Thermal Neutron Analysis (PFTNA) technology designed as borehole logging tool will be modified and applied in a closed silo of a pulverized coal injection (PCI) system. BF trials for real-time analysis of coal composition to adjust the coal injection rate near time will be performed.

The PFTNA-technique takes advantage of a switchable pulsed neutron generator for emission of fast and thermal neutrons and a gamma ray detector which record the characteristic gamma photons generated by interaction of the emitted neutrons with the nuclei of the surrounding coal material. It delivers characteristic spectra as basis for  determination of the PC composition.

 

Additional the real time spectra will be processed by fingerprint analysis software (pattern recognition). The analysis is based on statistical data evaluation of the gamma spectra and delivers the operator principle parameter of the PC for Blast furnace optimization.

The involved Partners in the research project are:

VDEh – Betriebsforschungsinstitut GmbH  
Sodern  
Malvern Panalytical GmbH  
thyssenkrupp Steel Europe AG  

This project receives funding from the Research Fund for Coal and Steel under grant agreement No. 754 200

Remocoal objectives

The main objective of this project is to demonstrate the high benefit of the real time analysis of coal composition for industrial application in better adjusting/controlling the pulverised coal injection rate and improve the production process.

The implementation of the PFTNA technology and the finger print analysis software enables to:

  • homogenize process fluctuations and improve process stability
  • run optimised pulverized coal injection rate and therefore to lower the safety coke rate of BF (improved forward control)
  • carry out a trend analysis by the operator and adjust the coal blending
  • lower operational costs
  • decrease CO2 emissions by reduced total fuel rate and improved process control.

The new technology shall be demonstrated at the pulverized coal injection plant of a BF at tk SE. Finally, a concept will be set up for the implementation of the PFTNA technology and the real-time data evaluation at European blast furnaces.

Remocoal research approach

The development of the online monitoring systems in RemoCoal will be achieved in four major steps. An overview of the concept is illustrated in the following figure:

  1. The adaption of the neutron probe and the software as well as inhouse calibration: The PFTNA probe will be adapted for the implementation in closed silos of an injection plant of a tk SE blast furnaces. The adaption comprises the optimisation on the signal detection with respect to the construction material and probe design via simulation. Also a safety concept for applying the neutron probe will be set up. The finger print recognition software will be modified as support tool for the blast furnace operator and implemented. After adaption a primary inhouse calibration of the neutron probe using pulverised coal analysis as reference will be carried out.
  2. Calibration rig in pilot scale: To obtain a reliable calibration of the neutron probe in industrial scale a calibration rig in pilot scale will be engineered and set up. The pre calibrated neutron probe will be used for calibration trials with defined coal and coal blends to obtain an industrial calibrated neutron probe.
  3. Application at Industrial scale: The developed PFTNA probe will be installed and applied in a closed silo of the tk SE pulverized coal injection plant at a blast furnace. The results will be compared to standard analysis. The finger print recognition software will be proved by the operator to an optimized utilisation of PC at the BF. On the basis of the gained experiences and the results a concept for the implementation of the PFTNA technology and the real-time data evaluation at European blast furnaces will be set up.
Avatar ByDr. Martin Schlautmann

PerMonLiSt

PerMonLiSt

Continuous Performance Monitoring and Calibration of Model and Control Functions for Liquid Steelmaking Processes

PerMonLiSt project objectives

The main objective of the research project is to improve, for the different stages of the liquid steelmaking process route, the continuous monitoring of the process performance as well as to ensure the permanent reliability of used dynamic process models and control rules. For this purpose, methods and tools will be developed involving the application of innovative and comprehensive performance indexes and strategies for automatic calibration of model and control parameters.

By these developments the following benefits shall be achieved for the liquid steelmaking processes:

  • Improved on-line monitoring of the process performances, to be used by engineers and operators to decide about necessary countermeasures. Moreover, the increased knowledge about the process behaviour can be used to improve the operating practices.
  • Long-term reliable operation of dynamic process models and rule based set-point calculations used for off-line process optimisation as well as on-line monitoring and process control, by continuous monitoring of model and control performance with automatic adaptation of related parameters – e.g. by least-squares-fitting, Kalman filter and machine learning approaches.
  • Improved reliability and stability of the liquid steelmaking processes by enhanced performance of model- and rule-based control of analysis and temperature of the steel melt with reduced scatter and deviations from the desired target values.
  • Minimisation of energy and resources consumption as well as treatment duration by enhanced reliability of level-2 automation and process control functions.

The developed tools will be coupled to an integrated approach and tested exemplarily for the most important liquid steelmaking facilities of the electric steelmaking route, i.e. for EAF, LF, VD and AS plants.

The project started at July 1st 2016 and ends at December 31st 2019. Involved partners in the research are:

VDEH-Betriebsforschungsinsitut GmbH
Centre for Research in Metallurgy
Feralpi Siderurgica S.p.A.
Centro Sviluppo Materiali
Peiner Träger GmbH
Horizon 2020

The research has received funding from the European Union’s Research fund for Coal and Steel (RFCS) under grant agreement No. RFSR-CT-2016-709620.

PerMonLiSt achieved results

The available process models and required process data have been described and assessed regarding current accuracies for the EAF and secondary metallurgical ladle treatment processes at PTG, Feralpi/Lonato and Tata/Aldwarke, respectively. The related data acquisition and model functions have been completed where necessary.

Process and model performance indexes have been defined for assessment of process behaviour and related model calculations in electric steelmaking processes. The analysed correlations between process performance indexes and operating practices show different significances. The most significant correlation is given between metallic yield and specific oxygen consumption in EAF. The relation of specific energy consumption decreasing with increasing productivity in EAF depends on the characteristics of the furnace and its operation. The desulphurisation efficiency in ladle treatment shows positive correlation with the volume of applied stirring gas. Analysed correlations between model and process performance indexes reveal systematic errors of the respective model for certain ranges of process operation.

Regular ranges for defined process performance indices have been defined which shall be used within enhanced monitoring and alert functions. At Feralpi Lonato steel plant the newly installed on-line system already provides first enhanced monitoring functions regarding process behaviour and performances. At PTG steel plant suitable operating practices have been defined within the existing manufacturing execution system and model based dynamic adaptions of selected set-points of operating practices have been assessed for the ladle treatment process.

A least-squares-fit approach has been implemented and used for automatic off-line calibration of EAF model parameters of the furnaces at PTG steel plant. A concept for use of a Kalman filter method for parameter estimation of the EAF model of CRM has been proven within first tests. The identifiability of parameters of the ladle treatment model developed by BFI has been proven. Thus, the Kalman filter method can be applied for on-line estimation of these parameters. Furthermore, a concept for a machine learning system to be used for auto-calibration of operating practices at Feralpi Lonato site has been set up and first steps of realisation have been carried out.

Avatar ByDr. Frank Mintus

PowGETEG

PowGETEG

Recent results of the RFCS research project PowGETEG (Power generation from hot waste gases using thermoelectrics)

PowGETEG project abstract

Industries involve a huge amount of energy consumption. A considerable amount of this energy is lost and escapes to ambient as waste heat. Energy recovery from industrial waste-heat streams attracts interest for commercial and strategic reasons. Main drivers are international competition and technological opportunities, combined with geopolitical issues such as security of energy supply, energy consumption and greenhouse gas emission. In recent years, numerous ideas have been suggested either for better process integration, reuse in other settings, or for power generation. For an efficient use of waste heat generally following order is essential:

  1. Prevention / reduction of waste heat e. g. by thermal insulation
  2. Recycling of waste heat into the process e. g. by combustion air preheating
  3. In-house use of the waste heat e. g. for heating purposes
  4. Conversion of waste heat into other forms of energy e. g. electricity or cooling energy
  5. External use of waste heat e. g. in district heating networks

In the iron and steel industry the points 1 to 3 are usually state of the art. Thermoelectric (TE) devices have the ability of directly convert waste heat into electricity and can be located under point 4.

TE materials are semiconductors which exhibit a strong relationship between a current flow in the material and the passage of heat through the material. This is due to the Seebeck effect. The Seebeck effect shows itself as the generation of electrical power from the semiconductor when opposite ends of a piece of the material are subjected to hot and cold temperatures respectively. TE modules consist of arrays of N and P type semiconductors in which electrical energy can be produced. TE systems have well known advantages: no moving parts, simple configuration and long-run unattended operation for thousands of hours. Additionally, they are scalable and do not release any pollutant to the environment during operation. Hence, they could be suited for many applications at different scales. Proved applications of thermoelectric power production are in the Aero and Space industry and for power supply in remote areas e.g. at pipelines, on offshore platforms or in nature protection areas. Until now waste heat recovery from industrial plants by TE devices is just demonstrated in research projects in prototype scale applications.

The RFCS PowGETEG research project aims to investigate the possibilities of TE power generation using industrial gaseous waste heat at temperatures well above 550 °C in order to verify the techno-economic feasibility of TE systems for industrial scale waste heat utilization.

The project started at July 1st 2015 and ends at December 31st 2018. Involved partners in the research are

VDEH-Betriebsforschungsinsitut GmbH  
University of Glasgow  
Gentherm GmbH  
thyssenkrupp Steel Europe AG  
Fundacion Cetena  

The research has received funding from the European Union’s Research fund for Coal and Steel (RFCS) research programme under grant agreement No°RFSR-CT-2015-00028.

PowGETEG objectives

Waste heat recovery by TE systems in industrial scale is not known until now. Just a few research projects investigate TE waste heat recovery, mainly in low temperature range with common BI2Te3 modules. Knowledge and studies about high temperature waste heat recovery by thermoelectrics in industrial plants and industrial scale are rare.

Aim of the project is to develop a TE demonstrator with a power output of 1 kWel for utilization of high temperature industrial waste gases with temperatures well above 550°C. The demonstrator will be tested in an industrial environment for several months to determine the techno-economic feasibility of such a system and to make statements about the possibility to use the technology in non-iron and steel industries.

PowGETEG research approach

Main aim is the long-term testing of a newly developed TE demonstrator in an industrial environment. Thus, several waste heat sources of an integrated steel mill will be studied, supported by both tests and data evaluation to determine their suitability for such a long-term test.

Since the TE system will be installed in the waste gas of an iron and steel manufacturing process, advanced components, materials and solutions need to be integrated in the TE system and the electrical power subsystem. These requirements are determined by the high temperature level at which TE power generation will now be applied and the nature of such waste gases, that are produced when combusting iron and steel process gases. For that reason surface coatings for antifouling will be investigated to protect the heat exchanger of the TE system from damages.

To optimize the performance and power output of the TE system a tailor made power converter and new MPPT (Maximum Power Point Tracking) algorithm will be developed. The goal of the MPPT algorithm is to set the TE system to operate at its optimum power output according to the temperature conditions.

By testing a bench scale unit in the laboratory under near-service conditions, which will be able to produce about 200 Wel, conclusions can be drawn about the requirements to process control, power conversion, heat exchanger design and the construction that supports the TE system in the waste heat stream.

Based on the results of the bench scale test a 1 kWel demonstrator will be developed and tested at the selected industrial plant for several months. The results will then be used to study the techno-economic feasibility of implementing TE systems in high temperature waste gases. This includes a comparison with other steam based power producing technologies and an extrapolation of the research results to other industries.

PowGETEG recent results                                                           

Main results obtained until now are:

A suitable waste heat source at TKSE steel plant was selected and the connection for the demonstrator installed.

A thermoelectric cartridge with an expected power output of 250 W was assembled and tested in the laboratory under near-service conditions.

 

 

 

 

 

 

 

 

 

A power conversion system was developed and assembled. A new MPPT algorithm was designed with an increased power output of 3.7 % compared to other MPPT algorithms.

 

 

 

 

 

 

Coatings for antifouling were investigated and suitable coatings selected

PowGETEG – TEG for high temperature waste heat recovery

Avatar ByDr. Jörg Adam

DEPREX

Recent results of RFCS DEPREX research project – Early detection and prevention ot tuyere damaging conditions for extension of tuyere life time at blast furnaces

Registration for Webinar

                                                                                                                                              joerg.adam@bfi.de                  hauke.bartusch@bfi.de

The organisers of the webinar will declare guidelines on adherence to competition-law regulation and will take care of their compliance.

DEPREX project abstract

Up to now the damage of a blast furnace tuyere is an unpredictable incident during usual blast furnace operation, which happens in average between 30 to 120 times a year. Each single tuyere damage effect a stoppage of the whole blast furnace of several hours for repair. Those unplanned stoppages caused by tuyere damage effect:

  • additional consumption of energy (coke, auxiliary energy, etc.),
  • additional costs mainly for coke, staff and equipment,
  • increased risks for severe operational incidents and occupational health
  • additional emissions (CO2) and
  • loss of production.

Although BF operators and R&D institutes have done a lot of effort analysing the tuyere damages and trying to find the reasons for those incidents there are still major gaps what to do or avoid for lowering tuyere damage incidents at BF operation. The main difficulty up to now was the “singular” character of the incidents due to local thermal overload and the massive destruction effect within short time, which has led to an acceptance of those damages as usual in the past. Consequently, no operational tools are available, yet, to solve the problem.

The RFCS DEPREX research project aims to develop an operational online control system for early detection and prevention of tuyere damaging conditions in order to decrease the frequency of unplanned BF stoppages for significant reduction of energy consumption and costs in BF operation.

DEPREX objectives

The damage of a blast furnace tuyere is an unpredictable incident in blast furnace operation. Each single tuyere damage effect a stoppage of the whole blast furnace of about two hours up to eight hours for repair. Although, the hot blast is stopped and no hot metal is produced, coke is consumed and additional coke has to be charged. Energy is spent without any benefit.

The additional energy caused by a BF stoppage due to tuyere damage has been estimated roughly to about 1.600 TJ each year for German BF only. The estimation implied a damage frequency of 45 damages per blast furnace and year. Assuming the same tuyere damage frequency for blast furnaces in EU 28 the useless energy consumption results of more than 6.000 TJ. Doubling the extension of BF tuyere life time gives a benefit of 3000 TJ. Therefore reduction of tuyere damage frequency is an important aim to the sustainable energy use and reduction of costs strengthening the competitiveness of the European iron and steel industry.

The aim of the planned RFCS project is the development of an online BF tuyere damage risk assessment system for early detection and prevention of tuyere damaging conditions in order to decrease the frequency of unplanned BF stoppages. The decreasing number of unplanned blast furnace stoppages due to tuyere damages enables a significant reduction of energy consumption and costs in blast furnace operation. Furthermore, it decreases the risk for the occupational health due to e. g. contact of blast furnace staff with toxic CO containing gas and hot metal during exchange of damaged tuyeres. Therefore, each prevented tuyere damage helps to increase safety of BF staff.

Consequently, the proposed project contributes to the RFCS programme objectives (Council Decision 2008/376/EC).

DEPREX research approach

To reduce the frequency of unplanned stoppages due to tuyere damages an innovative BF tuyere damage protection approach is developed with the project DEPREX. The key idea of this new approach is to detect early indications for BF tuyere damaging conditions before the tuyere damaging process has started and to prevent those conditions with suitable countermeasures in BF operation. Thus, the BF tuyere life time will be extended. The new integrated DEPREX approach is shown schematically in the figure below.

Additional knowledge about BF tuyere damage mechanism and weak spots / areas at tuyeres is generated by advanced analysis of the degradation of BF tuyere material properties over the life time of such components. Up to now metallurgical and thermo chemical investigations have only been carried out at damaged tuyeres. The chronology of material properties of BF tuyeres “from cradle to grave” has never been investigated before and is expected to give important additional information. The additional knowledge about tuyere damaging mechanisms is one key component in the development of the new online BF tuyere damage risk assessment system.

In order to get the necessary thermal data from the BF tuyere area new operational BF measuring tuyeres (MT) with advanced fibre optical temperature measurement device will be developed. The BF measuring tuyeres with fibre optical temperature measurement, generates important information concerning the thermal conditions in the BF hearth for the BF tuyere damage risk assessment system.

The new operational BF tuyere optical monitoring system (OMS) is used for monitoring of the BF tuyere and detection of tuyere damaging conditions. The system generates additional input for the new BF tuyere damage protection system. The new technology can be used as trigger for countermeasures at an early stage. Consequently, the advanced optical monitoring system brings an added value to the early detection of abnormal tuyere operation conditions effecting tuyere damages.

                                                                                This video can only be viewed with Chrome or Opera.

The data and information generated with the new operational BF tuyere monitoring systems (MT & OMS) together with operational data of the blast furnace are concluded, analysed and processed in the model-based online tuyere damage risk assessment system. The aim is an early detection and prevention of BF tuyere damaging conditions with appropriate counteractions of the BF operators.

The basic idea of this new online BF tuyere damage risk assessment system is, first, to provide new operational BF tuyere monitoring systems improving and combing the prototype measuring tuyeres and the tuyere optical control system established in a previous project. Second, the measuring data will be correlated with operational data of the blast furnace. The results will be exploited for industrial online application in a model based online BF tuyere damage risk assessment system. The new BF tuyere damage protection system is composed of the following modules/ components:

  • New operational BF measuring tuyeres with advanced fibre optical temperature measurement at the whole tuyere surface extending into the raceway
  • New operational BF tuyere optical control system with advanced extraction of parameters representing conditions in and in front of the tuyere
  • Online monitoring system for early recognition of tuyere damage risk combining statistical and model based analysis of operational BF and measuring tuyere data
  • New process control strategies for different escalation levels of tuyere damage risk

The overall aim of the DEPREX RFCS research project is the early detection and prevention of tuyere damaging conditions for the extension of BF tuyere life time. The decrease of the frequency of unplanned blast furnace stoppages due to tuyere damages effect a significant reduction of energy consumption and costs in blast furnace operation, contributing to the RFCS programme objectives and strengthening the competition of ironmaking in Europe.

VDEH-Betriebsforschungsinsitut GmbH  
thyssenkrupp Steel Europe AG
voestalpine Stahl GmbH
ISD Dunaferr Co. Ltd
Furol Co. Ltd
The project leading to this application has received funding from the Research Fund for Coal and Steel under grant agreement No 709424.
Avatar ByDr. Hauke Bartusch

stackMonitor

stackMonitor

Recent results of RFCS stackMonitor research project

stackMonitor project abstract

 

The decreasing and fluctuating quality of raw materials and the aim to maximise PCI and decrease coke rates force European blast furnaces to operate closer to operational limits. At same time productivity and efficiency must be raised to survive in global competition. High stack permeability and stable gas distribution become most important.
However, the analysis and control of the stack processes is difficult: Hundreds of  measurement values are available nowadays, but they are distributed around the blast furnace and just show indirect “fingerprints” from outside instead of the real internal process information needed (e.g. position of process zones).
New measurement techniques deliver very fast, full 2D information of the top (acoustical gas temperature, burden profile radar), but they are not sufficiently validated and not investigated by research. Instead, the operators are overcharged with even more separate measurement data. No overall process information is available to decide about control actions.
The main idea of StackMonitor is to establish a new hybrid approach of data processing which couples statistical and kinetic process models with several online measurements. This new approach will provide industrial benefit even beyond iron making, since several industrial processes suffer from the mismatch between the vast amount of measurement data and its poor exploitation.

To achieve this aim, StackMonitor establishes the innovative coupled CFD-DEM simulation to support online process monitoring and control, validated with comprehensive high temperature lab trials. Thus, for the first time the interrelations between solids and gas in the upper stack can realistically be described: The percolation, mixing and degradation of material during descent and the corresponding layer permeability.

Online tools for process monitoring, analysis and control are developed and validated in collaboration with three industry partners covering different operational conditions.

Involved Partners in the reseach are

  • VDEh – Betriebsforschungsinstitut GMBh
  • Aktiengesellschaft der Dillinger Hüttenwerke
  • Salzgitter Flachstahl GmbH
  • Abo Akademi
  • Oulun Yliopisto

This project has received funding from the Research Fund for Coal and Steel under grant agreement No 709816.

stackMonitor objectives

The main technical objective of StackMonitor is to achieve a break-through of Blast Furnace Stack online monitoring for appropriate control against non-ideal stack states. This technical objective is as well a strategical objective of high importance, since it is necessary to make the European Ironmaking industry sustainable in the tough technologic and economic environment.

The plants are forced to handle at same time

  • raw materials of lower quality,
  • raw materials with greater quality fluctuations and
  • lower coke rates in connection with higher PCI rates.

These boundary conditions mutually amplify their negative impacts decreasing permeability and stability of the stack processes which dominate the efficiency and safety of the Blast Furnace process. New tools are needed by research and industry to handle these effects. StackMonitor will provide these tools on a complete new technical level, to enhance productivity and energy efficiency and to decrease CO2 emissions and costs.

The objectives of StackMonitor will be achieved by a new approach which combines innovative measuring techniques, new simulation methods and laboratory trials. This describes and analyses the physical and chemical processes in the stack on a new level of accuracy and detail. StackMonitor develops and establishes the combined new methods for operational process monitoring, analysis and control in industrial environment.

The following technical objectives are aimed at:

  • Exploit new 2D/3D top measurements (acoustical gas temperature, radar) to their full potential.
  • Combine the new and conventional measurements to deliver new high-quality information about the inner stack state.
  • Establish innovative modelling approaches (e.g. coupled CFD-DEM) for the analysis of industrial plants
  • Exploit the new modelling approaches to provide extremely important interrelations of solid properties (along the stack) and gas flow on a new level of detail and accuracy
  • Fuse and analyse all this information in a CFD-based online Stack Monitoring System.
  • Derive tailor-made control actions based on the new online process analyses
  • Validate the Monitoring System and the control actions at different sites using operational trials
  • Disseminate the system to other European Blast Furnaces.

stackMonitor research approach

The development of the online monitoring systems in StackMonitor will be achieved in four major steps which form the work packages in StackMonitor. An overview of the concept is illustrated in the following figure:

2016-09-30-stackmonitor-approach-bat

  1. Enhanced evaluation of new 2D BF top data measurements: The new top measurements will be validated in combination with conventional measurements, operational data and charging data. The influences acting on the top gas temperature measured by a 2D acoustical system will be investigated on different time scales to separate overlapping effects. CFD-DEM-simulations will support the investigations with new fundamental knowledge.
  2. Online determination of permeability of material layers during descent and analysis of stack gas flow: The 2D top data will be evaluated to derive new online information about the charged layers: The structure and descent of each layer will be determined using 3D radar data. A permeability indicator for each charged layer will be determined exploiting short-time changes of the acoustical top gas temperature. This data will be coupled with the change of material properties during descent including the interrelation to the gas flow, both delivered on a complete new level of detail and accuracy by an innovative CFD-DEM model and comprehensive lab trials.
  3. Multi-physics process zone determination by new 2D top data: After removal of charging influences the 2D top gas temperature profile delivers more accurate information about the gas flow through deeper stack zones. This information will be combined with vertical pressure measurements (along the wall) by a new multi-physics, multi-dimensional approach to estimate the cohesive zone profile. Furthermore, CFD flow simulations, online connected to measured data, will be established as powerful new approach to determine the stack process zones.
  4. Synthesis to online stack process monitoring and control tools: The investigations and tools from work steps 1-3 provide fundamentally new information about the stack processes and boundary conditions. Step 4 of StackMonitor will merge this information in online stack monitoring tools, clearly indicating temperature distribution, reaction zones and gas flow. The online tools will be used for recommendation of control actions. A clear industrial validation of all tools will be done at several blast furnaces to assure the transferability for a wide and general use within European steel industry.

stackMonitor – Online Blast Furnace Stack Status Monitoring