RealTimeCastSupport (RTCS)

Embedded real-time analysis of continuous casting for machine-supported quality optimisation

Webinar on 8th of September 2023

Outlook

K. Marx, B. Palm, M. Köster, Y. Kaymak, Z. Kargar (BFI)

Transferability of RTCS solutions

- > Transferability to other applications of the monitoring and support systems is given for:
 - Casting powder monitoring system (Cameras easily placed at different positions; lenses/cooling devices can be adapted; software is modular)
 → different sizes (bloom or billet caster), aggregates (tundish), or materials (casting oil or slags)
 - FOTS temperature measurement in mould (Sensors adaptable regarding number and positions; software must be adapted for different sensor layouts)
 different sizes (bloom or billet caster), aggregates (any mould)
 - > CFD-based Digital Twin (Possibility to adapt geometry and parameters)
 - > Data-driven solution (Common process characteristics of plants, such as ladle and tundish configurations and casting parameters, serve as the basis for a transfer; model adaptable to plant-specific data; regular adjustments with new data from target plant increase transferability)
 - \rightarrow different sizes (bloom or billet caster)

Outlook

As quality requirements are high demanding in continuous casting the plant operation should be improved to increase the quality and avoid product waste

Topics for future research projects:

- > CFD+FEM: Extension of models to compute thermal stresses within the solidified shell, parameter studies, sensitivity analysis and surrogate model development
- FOTS measurement system for monitoring of mould temperatures and inference on melt/strand behaviour in mould
- > Monitoring of crater end position using laser vibrometry
- Online supervision of the strand surface using cameras and enhancing a defect detection with supervised machine learning

Not topic of RTCS

Outlook CFD+FEM

Short summary of working steps for follow-up project:

- 1) literature survey for constitutive model
- > 2) development of FEM for stress/deformation
- > 3) FEM + CFD combination
- > 4) parameter studies + online surrogate model

<u>Task 1:</u> Extension of an existing mould CFD-model by FEM module for solidification and thermal stress in solidified steel (6-7 PM)

<u>Task 2:</u> Parameter sensitivity studies to determine influences on product quality using combined model (4-5 PM)

Task 3: Exploitation of digital twin for online monitoring (PM 5-6)

Outlook FOTS

- FOTS measurement system for monitoring of mould temperatures and inference on melt/strand behaviour in mould
 - Instrumentation of two moulds at DH caster
 with in total 32 fibres with 32 sensors per fibre
 - > High spatial resolution vertical to casting direction
 - Extensive monitoring of casting process to identify parameters which have an influence on shell deformation and crack formation
 - Further test and optimization of newly developed reusable sensors

*developed in ConSolCast (The project has received funding from the Research Fund for Coal and Steel under grant agreement No. 799295.)

Outlook laser vibrometry

- Innovative laser vibrometry method* for non-contact measurement of the degree of solidification in > the strand
 - in combination with dynamic online temperature and solidification model as well as visualisation of casting conditions and model results

cutting torch

- \rightarrow Comprehensive monitoring of casting conditions and strand quality in terms of T profile, shell growth and crater end position
- → Reduction of strand breakouts and increase in product quality and productivity of the continuous casting process
- Planned next steps: Further development and validation of the presented methods for other casting machines with other strand formats and steel grades
- General transferability given, possible limitations: >
 - Accessibility of the measuring position with laser beam
 - Signal degradation due to splash water and steam >
 - Teaching of the AI-based classification for each > casting machine and each measuring position

6

Outlook strand supervision

- Online supervision of the strand surface using cameras and enhancing a defect detection with supervised machine learning
- With the software** for displaying and evaluating the strand surface temperature and the scale coverage, the following quality-relevant situations can be detected:
 - > abnormal casting conditions (such as strong fluctuations in the mould) due to strong fluctuations in the average temperatures
 - > the amount of scale as a result of the casting process
 - > abnormal average temperatures in the billet section or at the corners, which may indicate abnormal casting conditions and cause defects
 - > defects on the strand surface after appropriate teaching
- Generally applicable for other steel grades and formats, as adaptable functions were implemented
- Still open whether software is also suitable for round products; would have to be tested

**developed in SupportCast (The project has received funding from the Research Fund for Coal and Steel under grant agreement No. 754130.)

